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NOMENCLATURE INTRODUCTION 

radius of the tube; 
4h/pc,u,, dimensionless; 
concentration of A; 
concentration of A at inlet; 
concentration of A in material injectfd; 
wall concentration of A, equals C~ for plug flow; 
average specific heat of reaction mixture; 
average specific heat of material injected; 
c&a ; 
cdT4. ; 
energy of activation; 
the magnitude of the fraction of the inlet reactant 
flow rate that is depleted by the reaction in a 
reactor of given length; 
flux of A across tube wall, mols per unit area per 
unit time; 
heat-transfer coefficient: 
2nk, c$( -AH&u, PC,, f, ), dimensionless; 
rate constant (function of temperature) 
= k,exp(-E/RT); 
constant in Arrhenius equation, see above; 
Zakc~‘/u, (isothermal case); 
2ak, Y&m l/u, ; 
order of reaction; 
rate of disappearance of A by chemical reaction, 
mols per unit time per unit volume, equals kf”“; 
gas constant; 
1 -FA/w,,._; 
temperature of reaction mixture; 
uniform external temperature; 
temperature at inlet of the reactor; 
velocity at longitudinal position z; 
velocity at inlet of the reactor; 
u/u, ; 

THE POROUS wall reactor is an object of current research 
interest. Very little has been published on the subject. A 
brief review of the literature may be found in a paper by 
Shah and Remmen Cl]. The objectives of the present 
copulation are: 

(1) To extend the first order,iso~e~l, plug flow analysis 
of Shah and Remmen to reactions of order n. 

(2) To establish a realistic basis for characterizing the per- 
formance of a porous wall reactor. 

(3) To consider heat effects in a first order irreversible 
reaction with a view to studying the inffuence of wall 
permeation on “parametric sensitivity”, (2). 

BASIC EQUATIONS 

For the isothermal case, assuming constant fluid density 
and wall permeation velocity, the mass balance on reacting 
species A are: 

(I) Suction: 

$(Uc)+KC+4(1-S)VC=O 

u = 1-4V{. 
(2) Injection : 

$(0c)+KC.-4vc,=o 

u = 1+4v5. (4) 

The analytical solutions to equations (1) and (3) subject 
to the boundary condition C = 1 at t = 0 are listed in 
Table 1. (Analytical solutions for the case of injection with 
C, #O and n # 1, or 2 were not obtainable.) 
For the non isothermal reactor the heat and mass balances 
for the case of injection may be expressed as follows: 

velocity at the wall; 
G/% ; 
longitu~nal position. 

Greek symbols 

a, defined by equation (8); 
P, defined by equation (T-10); 
AH& heat of reaction; 
E, EjRT,, dimensionless; 
0, T/T,; 
B 
n,” 

TF./‘&; 
defined by equation (T-9); 

5, zJ2n; 
P, average density of reaction mixture; 
PEI average density of material injected. 

- 4vc 

1+4v5 

-~(6-i)+4~(ee-~) 

1 f4V5 

(5) 

(9 

C = I, 8 = l&,/Twalr at < = 0. (7) 

The starting equation is given by equation (7). In the 
derivation of the above equations the physical properties 
were assumed constant. Also Q,Ic~~ and pips are assumed 
to be unity. Analogous equations can be derived for the 
case of suction. 
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Table 1 

K 

C = (1-4”#+ ref [3] 

Injection : 

(I-n)K I _-__ 
4y 

1- uc+4vc*I; 
a=- 

1+4vc,5 

- 

{ 

4v 

1 

It-1 

c = (K+4V)(1+4V5)“-‘-K 

n=2, CE#O: 

c = z (1+S)(1+4v5)-~+l@-1) 

K [ A-(1+4vg)-@ 1 
where 

j3 = ‘Jo 

(T-1) 

(T-2) 

(T-3) 

(T-4) 

(T-5) 

(T-6) 

(T-7) 

(T-8) 

(T-9) 

(T-10) 

RESULTS AND DlSCUSSlON 

Shah and Remmen [l] defined an index for the reactor 
performance, fA, as “The magnitude of the fraction of the 
inlet reactant flow rate that is depleted by the reaction in 
a reactor of a given length”. However, what is of interest 
is the magnitude of the fraction of the “net input” of the 
reactant converted in a reactor of a given length. In the 
case of injection of A, for example, the *net input” is the 
flow rate of A at the inlet pins the f)ow rate of A across 
the tube wall. Such a definition of reactor performance has, 
in fact, been used by Van de Vusse and Voetter 141. For 
the case of suction of A (and inerts) across tbe porous wall, 
“net input” of A equals the inlet flow rate of A minus the 
flow rate of A across tht wall, assuming that A bled out 

of the reactor is recovered. For the case of suction or 
injection of inerts only, as well as for the case when the 
reactant bled out cannot be recovered, the “net input” of A 
is just the inlet flow rate of A. The net conversion a is 
defined as follows : 

s 

1 
(- r&a2 dz 

a= 0 
“Net input” of A (8) 

The pertinent equations for a may be found in Table 1. 
Equations (T-l) and (T-5) apply to both isothermal and 
non-isothermal cases. 
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Isothermul cave Heat effects 
Figure 1 shows a plot of a vs l for suction, injection, and 

the impervious wall case. in reference [l] it was stated that 
“in the case of suction the leaking of reactant through tube 
wall will obviously hurt the reactor performance. On the 
other hand, in the case of injection permeation of reactant 
through the tube wall will help in improving the performance 
of the reactor”. These statements were based on f.. How- 
ever, on the basis of “net” conversion, a, different conclu- 
sions may be reached (Fig. 1). For example, at a given <, ct 
corresponding to injection of inerts is greater than that 
corres~nding to injection of reactant. (Curves 5 and 6 in 
Fig. 1.) For curve 5, since there is no reactant permeation 
across the wall, z = fA. A plot offA vs 5 is also shown in 
Fig. 1; thus, on the basis off”, injection of reactant is more 
efficient compared with injection of inerts while on the basis 
of a, the reverse is true. Also suction of A (and inerts) is more 
efficient compared to suction of inerts alone (curves 1 and 2 
in Fig. 1). From a design point of view a is a more realistic 
basis of reactor performance. 

The values of the parameters were taken from reference 
[2]. E = 22 NOcal., \( -AH&C,] = 73OO(l.)(“C/g mol., 
I& = 3.94 x lO”min- , C, = 0+2gmol/l., [2fifapC,] = 
0.2min-‘. 2ajti0 was chosen to be unity @in) so that an 
exact correspondence could be established with reference 
[2]. As in reference [2], the first order case, n = 1, was 
considered. The dimensionless parameters are: K = 3.94 x 
lOi’, B = 0.2. 0, = 1. The magnitudes of H and e depend 
on T,. For example, when T, = 340X, E = 33.301364 and 
H = 16918824 x 10i2. For all cases, ‘I;, = 340°K. Equations 
(5) and (6) were solved simultaneo~ly using the fourth order 
Range-Kutta scheme. Figure 2 shows the results (8 vs 5) 
for C, = 0 (injection of inert). Three values of T, are con- 
s,ldered: 337.5, 340 and 3425°K. V = 0 corresponds to the 
impervious wall reactor. It may be seen that a slight change 
in the wall temperature results in a substantial shift of the 
temperature profile. This has been referred to as “parametric 
sensitivity” [2]. It must be pointed out that the solution to 
the system of equations (5) and (6) is extremely sensitive to 
the term exp( -e/6). The results for the impervious wall 
reactor (V = 0) differ from those reported in [2]. It is believed 
that this may be due to the fact that in reference [2], the 
solutions were found with the aid of an analog computer. 
In the present case, a digital computer (Univac Series 70/7) 
was used with double precision. With injection of inert 
into the system the temperature profiles flatten out con- 
siderably. However, from a design point of view, the tem- 
perature behavior should be considered along with “net” 
conversion. Figure 3 is such a plot. It may be seen that 
although the injection of inerts helps keep the temperature 
under control, the advantage is counteracted by the de- 
crease in net conversion. Thus, both plots (Figs. 2 and 3) 
must be evaluated together in order to arrive at a reasonable 
basis for design. From a practical point of view the porous 
wall reactor is suitable for controlling exothermic reactions. 

0 0.2 04 0.6 *e I.0 t.2 1b4 1.6 k-8 2.0 2-2 

Dlmens~onlers Oistance, ( r d 

FIG. 1. Reactor performance vs dimensionless distance. 
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FIG. 3. Net conversion vs dimensionless distance. 
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NOMENCLATURE 

transfer number; 
equation (7d); 
stoichiometric mass of core species; 
diffusion coefficient; 
mass burning velocity through a stoichiometric 
mixture; 
stoichiometric mass of species i; 
mass injection rate; 
pressure; 
volumetric consumption rate of injected fuel; 
radial coordinate; 
time; 
mass of volatiles in solid fuel ; 
velocity component; 
mass fraction; 
coupling function, equation (4b); 
flux fraction; 
equation (7~); 
stoichiometric parameter, equation (16b); 
stoichiometric oxygen-fuel mass ratio; 
dimensionless radial coordinate, equation (4a); 
equation (4c); 
density; 
dimensionless reaction rate; 
rate of species generation by chemical reaction. 

Subscripts 

%, 

b: 
6, 
-5 
st, 
0, 
w, 
a, 

core species; 
fuel ; 
species i; 
initial value; 
oxygen ; 
solid; 
stoichiometric; 
volatiles; 
wall condition; 
condition at infinity. 

Superscripts 
,!I per unit volume; 
f, dimensionless quantity. 

1. INTRODUCHON 

THE EXTINCTION problem of droplets has been studied in 
some detail [l-4] and an extinction criterion in a closed 
form for opposed jet diffusion flame was obtained by 
Spalding [5], using an approximate analytical technique. 
Del Notario et al. [6] investigated the extinction of spherical 
and premixed diffusion flames in air. This communication 
presents a closed form solution for the gas extinction of a 
spherical diffusion flame. It attempts to link the method of 
solution of an opposed jet diffusion flame as obtained by 
Spalding [S] with that of a spherical symmetric non- 
adiabatic diffusion flame. 

2 GOVERNING EQUATIONS 

Consider a porous sphere through which a mixture of 
fuel and inert gas is injected. The conservation equations are 

Species: 

Momentum : p = constant 

Overall Continuity: 4npvr2 = ti. 

Let the Lewis number equal to unity. 

~=-!c 
4rcpDr ’ 

and 
/% - PC. m 

+ic = /%e.w-Bic.m 

From equations (1) and (4) for all i # c 

& = 
1 -exp(-l) 

I-exp(-&)’ 

(1) 

(2) 

(3) 

K 
c (4% b) 

(4c) 

(5) 


